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Abstract
We determine the form factor expansion of the one-point functions in integrable
quantum field theory at finite temperature and find that it is simpler than
previously conjectured. We show that no singularities are left in the final
expression provided that the operator is local with respect to the particles and
argue that the divergences arising in the non-local case are related to the absence
of spontaneous symmetry breaking on the cylinder. As a specific application, we
give the first terms of the low-temperature expansion of the one-point functions
for the Ising model in a magnetic field.

PACS numbers: 1110W, 6460A, 0520, 3280C, 7510, 0550

Quantum field theory at finite temperature is a subject of both theoretical and experimental
interest. In the Euclidean formulation, it corresponds to work with an imaginary time
compactified on a circle whose circumference R coincides with the inverse temperature. The
average of a generic product X of local operators is given by

〈X〉R = Tr Xe−RH

Tr e−RH
(1)

where H is the Hamiltonian.
In two dimensions, a non-perturbative study of the properties of the finite-temperature case

should be achievable exploiting the results of integrable quantum field theory. In particular,
a natural idea is that of approaching the computation of the correlation functions in a way
similar to that successfully used in the zero-temperature case, and evaluate (1) on the basis of
the multi-particle asymptotic states of the zero-temperature theory. In the end, the problem
should be reduced to summing over the matrix elements of the operators between the vacuum
and the n-particle asymptotic states (the form factors) which are known exactly in integrable
theories.

The one-point functions have a non-trivial temperature dependence and provide the
first test that this form factor method needs to pass. Following the analysis of the free-
fermionic case [1], an extension to the generic integrable case also exploiting the results of the
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thermodynamic Bethe ansatz (TBA) was conjectured in [2]. More precisely, it was proposed
that the ‘pseudoenergy’ given by the TBA should substitute the ordinary energy of the particles
in the thermal weight function entering the form factor sum. Lukyanov found agreement with
this conjecture in his semi-classical study of the sinh-Gordon model at finite temperature [4].

In this note, we analyse explicitly the form factor expansion of the one-point functions in
the finite-temperature integrable theories and find that the final expression, equation (16), is
simpler than proposed in the past: the weight function is the same than in the free cases and
all the effects of the interaction are contained in the form factors. Along the way we discuss a
number of delicate issues originating from the fact that the expression (1) is a sum over matrix
elements between identical asymptotic states which contain singularities. We explain why and
in which cases the final result is free of divergences.

This analysis also allows a clarification of the status of the conjecture of [2]. In fact, the
expression for the one-point functions proposed in that work differs from our equation (16) not
only in the thermal weight, but also in the operator-dependent part. In [2,3], the latter does not
coincide with the form factors (12) but is such that its combination with the modified weight
function reproduces the TBA result for the one-point function of the trace of the stress-energy
tensor. At present it is not clear how a similar expression involving the pseudoenergies could
be derived for other operators. In any case, due to the complicated temperature dependence of
the pseudoenergies, it would not be the explicit low-temperature expansion (16).

Consider an integrable quantum field theory whose spectrum contains a single neutral particle
of mass M . As usual, let us use the rapidity variable θ to parametrize the energy and momentum
of a particle as (p0, p1) = (M cosh θ,M sinh θ). Then relativistic invariant quantities depend
on the rapidity differences only. We denote S(θ1 −θ2) the scattering amplitude of two particles
with rapidities θ1 and θ2. It satisfies the crossing symmetry relation

S(θ) = S(iπ − θ). (2)

Integrability shows up in two respects [5]. First, it forbids any inelastic process, so that the
unitarity condition takes the simple form

S(θ)S(−θ) = 1. (3)

Second, it induces the complete factorization of multi-particle scattering amplitudes into the
product of the two-particle ones.

Take now a scalar operator �(x) in this theory which is local with respect to the particles,
and denote its matrix elements on the asymptotic multi-particle states as

F�
m,n(θ

′
m, . . . , θ ′

1|θ1, . . . , θn) = 〈θ ′
m, . . . , θ ′

1|�(0)|θ1, . . . , θn〉. (4)

The contribution of the n-particle asymptotic state to Tr �(x) e−HR is

f �
n (R) = 1

n!

1

(2π)n

∫
dθ1 . . . dθn F�

n,n(θn, . . . , θ1|θ1, . . . , θn) e−EnR (5)

where

En = M

n∑
i=1

cosh θi (6)

is the total energy of the asymptotic state, and we used the property �(x) = eiPµxµ

�(0)e−iPµxµ

.
f �
n (R) is of order e−nMR for MR → ∞. After defining

f �(R) =
∞∑

n=0

f �
n (R) (7)
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we can write

〈�〉R = f �(R)

f I (R)
(8)

with I denoting the identity operator.
It is our goal to rewrite this rather implicit expression containing the matrix elements

F�
n,n as a sum over the form factors F�

0,n which are exactly computable in integrable field
theories [6, 7]. Technically, this problem has several points of contact with [8], where non-
integrable field theories were considered as perturbations of the integrable ones. In that context
the matrix elements F�

m,n determine the first-order correction to the scattering process m → n

under the action of the perturbing operator �.
The reduction to the form factors F�

0,n is performed iterating m times the crossing
relation [6, 7]

F�
m,n(θ

′
m, . . . , θ ′

1|θ1, . . . , θn) = F�
m−1,n+1(θ

′
m, . . . , θ ′

2|θ ′
1 + iπ, θ1, . . . , θn) + 2π

n∑
i=1

δ(θ ′
1 − θi)

×
i−1∏
k=1

S(θk − θ ′
1) F

�
m−1,n−1(θ

′
m, . . . , θ ′

2|θ1, . . . , θi−1, θi+1, . . . , θn). (9)

The second term in the rhs accounts for the disconnected parts that appear if the crossed particle
hits a particle with exactly the same momentum and annihilates it. It contains the product of
the scattering amplitudes with the particles that need to be crossed on the way. We recall in
fact that the relation

| . . . θi, θi+1 . . .〉 = S(θi − θi+1)| . . . θi+1, θi . . .〉 (10)

is characteristic of integrable field theories. The situation of collinearity responsible for the
disconnected parts also induces an ‘annihilation’ pole in the matrix elements with residue [7]

−i resθ1=θ2+iπF
�
0,n(|θ1, . . . , θn) =

[
1 −

n∏
i=1

S(θi − θ2)

]
F�

0,n−2(|θ3, . . . , θn). (11)

Since (5) contains matrix elements involving two identical sets of momenta, it is obvious that
we will have to care about both annihilation poles and singular disconnected parts containing
δ(0) factors. We will see in a moment, however, that these potential sources of trouble drop
out and leave a final result which is perfectly finite.

Using (9) the first few f �
n (R) are found to be

f �
0 = F�

0 = 〈0|�|0〉 = 〈�〉R=∞

f �
1 (R) = 1

2π

∫
dθ1 e−E1R [F�

2 + 2πδ(0)F�
0 ]

f �
2 (R) = 1

2

1

(2π)2

∫
dθ1 dθ2 e−E2R [F�

4 (θ1, θ2) + 4π(δ(θ1 − θ2)S(0) + δ(0))F�
2

+(2π)2(S(0)δ2(θ1 − θ2) + δ2(0))F�
0 ]

f �
3 (R) = 1

3!

1

(2π)3

∫
dθ1 dθ2 dθ3 e−E3R [F�

6 (θ1, θ2, θ3)

+6π(2S(0)δ(θ1 − θ3) + δ(0))F�
4 (θ1, θ2)

+3(2π)2(2δ(θ1 − θ2)δ(θ1 − θ3) + S(0)δ2(θ1 − θ2)

+2S(0)δ(0)δ(θ1 − θ2) + δ2(0))F�
2

+(2π)3(2δ(θ1 − θ2)δ(θ1 − θ3)δ(θ2 − θ3)

+3S(0)δ(0)δ2(θ1 − θ2) + δ3(0))F�
0 ]
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where we introduced the notation

F�
2n(θ1, . . . , θn) = lim

ε→0
F�

0,2n(|θn + iπ + ε, . . . , θ1 + iπ + ε, θ1, . . . , θn). (12)

F�
2 (θ1) is a constant by relativistic invariance. We inserted in equation (12) an infinitesimal

displacement from the pole configurations and will discuss later the result of the limit. For the
time being we stress that the displacement has to be the same for all rapidities. Any different
choice would introduce an unjustified asymmetry among the particles.

Notice that, as a combined effect of the delta functions associated with the disconnected
parts, the S-matrix appears explicitly in the expressions for the f �

n only through the constant
factor S(0). It follows from equation (3) that

S(0) = ±1. (13)

Equation (10) shows that S(0) determines whether the statistics of the particles is bosonic or
fermionic. This means that the expansion of 〈�〉R in the generic integrable case is formally
the same than in the free bosonic and fermionic cases, all the difference being encoded in the
explicit expressions of the form factors.

The sum of the f �
n we determined gives

f �(R) = Z

{
F�

0 +
1

2π

∫
dθ1 e−E1R [1 + S(0)e−E1R + e−2E1R] F�

2

+
1

2

1

(2π)2

∫
dθ1 dθ2 e−E2R

×[1 + (e−MR cosh θ1 + e−MR cosh θ2)S(0)] F�
4 (θ1, θ2)

+
1

3!

1

(2π)3

∫
dθ1 dθ2 dθ3 e−E3R F�

6 (θ1, θ2, θ3) + O(e−4MR)

}
(14)

where all the singular delta function terms factorize into the quantity

Z = 1 +
∫

dθ1 e−E1Rδ(0) + 1
2

∫
dθ1 dθ2 e−E2R [S(0)δ2(θ1 − θ2) + δ2(0)]

+
1

3!

∫
dθ1 dθ2 dθ3 e−E3R [2δ(θ1 − θ2)δ(θ1 − θ3)δ(θ2 − θ3)

+3S(0)δ(0)δ2(θ1 − θ2) + δ3(0)] + O(e−4MR). (15)

Since F I
2n = δn,0, we have f I = Z, so that the singular disconnected parts completely cancel

out in the ratio (8) without the need for any specific regularization.
One can continue the computation and work out the next contributions with n > 3 in order

to convince oneself that the complete result is

〈�〉R =
∞∑

n=0

1

n!

1

(2π)n

∫ [
n∏

i=1

dθi g(θi, R) e−MR cosh θi

]
F�

2n(θ1, . . . , θn) (16)

with

g(θ, R) = 1

1 − S(0)e−MR cosh θ
. (17)

This expression provides the explicit form factor expansion for the one-point function. It only
remains to check that the specific form factor configuration (12) is not singular due to the
annihilation poles. For this purpose, take the form factor F�

0,2n(|θ1, . . . , θ2n) and bring the first
two particles on the singular configuration θ1 → θ2 + iπ . This pinching produces a pole with
the residue given by equation (11). We then repeat the operation on the second pair of particles
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by taking θ3 → θ4 + iπ , and so on with all the n pairs. This procedure produces n poles. The
numerator will contain the product

n∏
k=1

[
1 −

2n∏
i=2k+1

S(θi − θ2k)

]
(18)

where each string of scattering amplitudes inside the parentheses is made of factors S(θ2j +
iπ − θ2k)S(θ2j − θ2k). It follows from (2) and (3) that such factors are equal to 1, so that (18)
gives n zeros which cancel the poles and leave a finite result. We made these considerations
on a form factor which differs from (12) only for the ordering of the particles, namely (recall
equation (10)) for an overall phase which does not affect the final conclusion.

For later convenience, we write down more explicitly the first few terms in the low-
temperature expansion. They read

〈�〉R = F�
0 +

1

π
[K0(r) + S(0)K0(2r)] F�

2 +
1

π2

∫ ∞

0
dθ K0(2r cosh θ)F�

4 (2θ, 0) + O(e−3r )

(19)

with

r ≡ MR. (20)

For the specific case in which the operator �(x) coincides with the trace !(x) of the stress-
energy tensor, an alternative and effective way of computing the one-point function is provided
by the TBA approach [9]. It is then interesting to make a check of the agreement of the two
methods in this case. The one-point function of the trace is related to the ground state energy
on the cylinder (without the bulk term) E(r) as

〈!〉R = 〈!〉R=∞ + 2π
M

r

d

dr
[rE(r)]. (21)

The TBA allows the determination of E(r) from the knowledge of the S-matrix in the form

E(r) = −M

∫
dθ

2π
L(θ) cosh θ (22)

L(θ) ≡ −S(0) ln(1 − S(0)e−ε(θ)) (23)

where the ‘pseudoenergy’ ε(θ) is determined by the integral equation

ε(θ) = r cosh θ − 1

2π

∫
dθ ′ ϕ(θ − θ ′)L(θ ′) (24)

ϕ(θ) ≡ −i
d

dθ
ln S(θ). (25)

The pseudoenergy ε(θ) tends to r cosh θ in the zero-temperature limit. Iterating (24) once
with this initial condition and substituting into equation (22) produces the result1

E(r)

M
= − 1

π

[
K1(r) + S(0)

1

2
K1(2r)

]
− 2

π2

∫ ∞

0
dθ K1(2r cosh θ)ϕ(2θ) cosh θ + O(e−3r ).

(26)

We can now evaluate 〈!〉R to this order from (21) using the identity d
z dz [zK1(z)] = −K0(z).

The final result exactly coincides with (19) because it was shown in [8] (equations (3.23), (3.24))
on completely general and independent basis that2

F!
2 = 2πM2 (27)

F!
4 (θ1, θ2) = 8πM2 ϕ(θ1 − θ2) cosh2 θ1 − θ2

2
. (28)

1 In the computation one uses the fact that ϕ(θ) is an even function.
2 It has been checked for many models that only the ε-prescription (12) reproduces the general result (28).
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We also recall here that nearby a fixed point the ground state energy behaves as [10]
E(R) � −πCeff/6R, where

Ceff = C − Xmin

12
(29)

is given in terms of the central charge C and smallest scaling dimension Xmin at the conformal
point (Xmin = 0 in a ‘unitary’ theory). Integration of equation (21) then gives

CUV
eff − CIR

eff = 3

π2M2

∫ ∞

0
dr r(〈!〉R − 〈!〉R=∞) (30)

for the total variation along the whole renormalization group flow (CIR
eff = 0 in a massive

theory). It is easy to check that inserting in this formula equation (16) with (27) as the only
non-zero contribution for n > 0 gives the expected results 1 for the free boson and 1/2 for the
free fermion. One can also check (in the free as in the interacting case) that the approximation
of the rhs of (30) through the first low-temperature terms (19) produces a poor result, indicating
that the convergence to the intermediate- and high-temperature regimes is not very rapid. This
fact can be contrasted with the impressively fast convergence of the form factor expansion
(as a function of the distance) for the correlation functions in integrable field theory at zero
temperature. This different behaviour is hardly surprising in view of the different nature of the
two expansions.

Since the distribution (17) becomes singular as R → 0 in the bosonic case but not in
the fermionic case, the high-temperature behaviour is very sensitive to the statistics. For the
quadratic operators in the free cases one has

[〈!〉R − 〈!〉R=∞]free = 2M2
∞∑
k=1

Sk−1K0(kr) �
{

πM2/r S = 1
−M2 ln r S = −1.

(31)

For the vertex operators Va = eaϕ with scaling dimension Xa = −a2/4π , in the free theory
one has FVa

2n = a2n/2n, so that (16) gives

〈eaϕ〉free
R � ea2/4r R → 0. (32)

In the bosonic case S(0) = 1, it follows from the 1/r behaviour of the function (17)
that the n-particle contribution to 〈�〉R behaves as 1/rn at high temperature. Up to unlikely
cancellations of infinities, this means that the integral in the sum rule (30) diverges if 〈!〉R
receives contributions with n > 1, namely if the theory is interacting. Therefore, one is led
to the conclusion that in two dimensions the bosonic statistics applies only to the free case3

S(θ) = 1. An illustration of this fact is given by the sinh-Gordon model, namely the theory
of a scalar field self-interacting trough the potential µ cosh gϕ. Its exact scattering amplitude
S(θ) = (sinh θ − i sin πB)/(sinh θ + i sin πB), with B = g2/(8π + g2), shows that S(0)
becomes −1 as soon as g is taken different from zero. One can expect that the one-point
function 〈eaϕ〉R will behave in the high-temperature limit as a power law with an exponent that
diverges as g → 0 in order to reproduce the essential singularity (32).

We said that the operator �(x) entering (8) has to be local with respect to the excitations of the
zero -temperature theory. We now clarify the origin of this requirement. The general situation
can be illustrated through the example of the Ising field theory defined at R = ∞ by the action

A = ACFT + τ

∫
d2x ε(x) + h

∫
d2x σ(x) (33)

3 See [11] for an example of the troubles one encounters when looking for a counterexample.
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describing the perturbation of the Ising conformal point by the two relevant operators of the
theory, the energy ε(x) and the spin σ(x).

Consider first the case of vanishing magnetic field, h = 0, in which (33) describes
a disordered phase (τ > 0) and an ordered phase (τ < 0) dual to each other and both
corresponding to a free-fermionic theory (S = −1). What changes in the scattering description
of the two phases is the nature of the particles, which are ordinary excitations over the
unique vacuum at τ > 0, and kinks interpolating between the two degenerate vacua of the
spontaneously broken phase at τ < 0. The perturbing operator ε is proportional to the trace
of the stress-energy tensor (! ∼ τε) and is local with respect to both kind of excitations. Its
finite-temperature one-point function is given by (31). The form factors of the spin operator
are known in both phases [12, 13]. At τ > 0, they are non-zero only on states with an odd
number of particles so that 〈σ 〉R vanishes, as it should by spin reversal symmetry. In the broken
symmetry phase the spin couples to the states with an even number of kinks, and one could
expect a non-trivial result from equation (16). The spin, however, is not local with respect to the
kinks, and the residue (11) on the annihilation poles gets modified by a constant phase factor
(a minus sign in this specific case) multiplying the product of scattering amplitudes [13]. A
similar modification is induced in the factor (18) which no longer cancels the annihilation poles
of the matrix elements (12), so that the expression (16) becomes badly divergent for R < ∞.
The conclusion is that 〈σ 〉R is not defined at τ < 0. Since a finite value of 〈σ 〉R would imply the
existence of spontaneous symmetry breaking on the cylinder, this result illustrates the absence
of phase transitions in systems with a single infinite dimension.

The same mechanism applies to the generic case. In two (infinite) dimensions, only a
discrete symmetry can be broken spontaneously. The elementary excitations in the broken
phase are kinks interpolating among the discrete vacua. The order parameter is non-local with
respect to them, and its expectation values on the asymptotic states are incurably divergent.

Let us conclude this discussion of the Ising field theory at finite temperature by considering
the other integrable direction of the action (33), namely the case h �= 0, τ = 0. The spectrum
of the theory [14] now contains three particles below the lowest two-particle threshold with
masses M1,

M2 = (1.618 033 9887 . . .)M1 M3 = (1.989 043 7907 . . .)M1 .

Hence, the first terms of the low-temperature expansion for the one-point functions are

〈�〉R
〈�〉R=∞

= 1 +
1

π

3∑
i=1

A�
i K0(MiR) + O(e−2M1R) (34)

where the ratios4

A�
i = 〈0|�(0)|ai(iπ), ai(0)〉

〈�〉R=∞
(35)

are universal and can be extracted from the work of [15, 16] on the form factors of the Ising
model in a magnetic field. We give their values in table 1.

Notice that in this case the trace of the stress-energy tensor is proportional to the spin
operator. Hence, the amplitudes Aσ

i are 2πM2
i divided by 〈σ 〉R=∞. The latter quantity is also

known from the TBA [17]. The amplitudes Aε
i , instead, can only be obtained through a form

factor computation [16] in which the ‘cluster’ property explained in [18] plays an essential
role.

In conclusion, the form factor approach provides a systematic and explicit low-temperature
expansion for the one-point functions in integrable field theory at finite temperature. Form

4 Here ai(θ) denotes a particle with mass Mi and rapidity θ .
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Table 1. The universal amplitudes entering the expansion (34) for the Ising model in a magnetic
field.

� σ ε

A�
1 −8.099 9744 . . . −17.893 304 . . .

A�
2 −21.206 008 . . . −24.946 727 . . .

A�
3 −32.045 891 . . . −53.679 951 . . .

factors have already been computed for many integrable theories and it is highly desirable to
have numerical data to compare with the theoretical predictions. It also seems natural to expect
that the study of the two-point functions should be approachable along the same lines with the
goal of obtaining a low-temperature, large-distance expansion. This problem is beyond the
scope of this Letter and will be considered elsewhere.

I thank G Mussardo for interesting discussions.
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